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Fig. 5.  Mammary CSCs are the cell of origin of distant organ metastases in Apc1572T/+ mice. (a) IHC analysis of Apc1572T/+ macro- and micrometastasis. Analysis 
of differentiation (CK8, SMA, CK14) markers reveals a low level of differentiated lineages among micrometastases when compared with their macroscopically 
visible equivalents. Inversely, intracellular accumulation of β-catenin is clearly visible even at early stage of the metastasis process. Notably, pulmonary 
metastases were mostly found in animals with mixed background (C57Bl6/129OLA) characterized by a more aggressive manifestation of the malignant disease 
(data not shown). (b) IHC analysis of metastases from different organs obtained by tail vein injection of MaCSCs. HE, hematoxylin/eosin.
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performed significantly better as predictor (Supplementary Figure S7, 
available at Carcinogenesis Online).

Notwithstanding the mechanisms underlying its prognostic 
power, the notion that expression of genes differentially expressed 
in MaCSCs predict breast cancer outcome is indicative of the alleged 
role of these cells in metastasis formation at distant organ sites. Indeed, 
two yet preliminary lines of evidence point to the tropic, multipotent 
and cell autonomous nature of the mCSCs from Apc1572T/+ mammary 
tumors. First, Apc1572T/+ mice were shown to spontaneously develop 
pulmonary metastases, which fully recapitulate the multilineage fea-
ture of the primary adenocarcinomas with luminal, myoepithelial 
and squamous characteristics (21). Moreover, markers specific for 
the above-mentioned differentiated lineages are underrepresented 
among micrometastases identified in the lung of Apc1572T/+ mice 
when compared with macrometastases. Inversely, β-catenin intra-
cellular accumulation is more frequently observed in micro- than 
macrometastases, thus suggesting a metastasis-initiating role for 
the more undifferentiated and stem-like tumor cells (Figure 5a). In 
support of the IHC data, upon tail vein dissemination of the differ-
ent CD24/CD29 subpopulations, only the MaCSCs-encompassing 
Lin−CD29hiCD24+ cells were able to form multifocal metastases at 
a broad spectrum of organ sites, each fully recapitulating the histol-
ogy of the primary mammary adenocarcinomas (Figure 5b). These 
results indicate that, under these specific experimental conditions, the 
MaCSCs appear to be multipotent, highly tropic and cell autonomous 
in their capacity to differentiate in the same lineages, independently 
of the distant organ site. However, as the Apc1572T/+ mice were to date 
found to present with pulmonary metastases, it appears that under 
more physiological conditions of tumor cell dissemination from the 
mammary carcinomas, the migrating MaCSCs preferentially home 
into lung tissues. However, more definitive and indisputable evidence 
for the role of MaCSC as cell of origin of distant metastases will 
be obtained by Cre-Lox (e.g. with Lgr5 or Axin2 CreERT knock-in 
mice) lineage-tracing analysis.

In conclusion, we have shown that constitutive activation of Wnt 
signaling in the mouse mammary gland affects self-renewal and differ-
entiation capacity of stem/progenitor cells leading to the establishment 
of MaCSCs, which form TNBC-like tumors at the primary site. The 
same MaCSCs, upon systemic dissemination, are also likely to under-
lie distant metastases. Further elucidation of the genetic and epigenetic 
alterations and mechanisms underlying the activation of Wnt and other 
signaling pathways in stem-like subpopulations of triple-negative breast 
cancer will probably offer novel therapeutic targets for this specific 
group of women with poor prognosis and limited treatment alternatives.

Supplementary material

Supplementary Materials and methods, Tables S1–S6 and Figures 
S1–S7 can be found at http://carcin.oxfordjournals.org/.
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